PHILIPPIFIS # **PHILIPP**GROUP ## **PHILIPP Fixing sockets** **Installation and Application Instruction** ## Transport and mounting systems for prefabricated building | ■ Technical department | | | | | | | |------------------------------------|--|--|--|--|--|--| | | Our staff will be pleased to support your planning phase with suggestions for the installation and use of our transport and mounting systems for precast concrete construction. | | | | | | | ■ Special designs | | | | | | | | | Customized to your particular needs. | | | | | | | ■ Practical tests on site | | | | | | | | | We ensure that our concepts are tailored precisely to your requirements. | | | | | | | ■ Inspection reports | | | | | | | | | For documentation purposes and your safety. | | | | | | | On-site service | | | | | | | | | Our engineers will be pleased to instruct your technicians and production personnel at your plant, to advise on the installation of precast concrete parts and to assist you in the optimisation of your production processes. | | | | | | | ■ High safety level when using our | products | | | | | | | | Close cooperation with federal materials testing institutes (MTIs), and official approvals for the use of our products and solutions whenever necessary. | | | | | | | ■ Software solutions | | | | | | | | | The latest design software, animated videos and CAD libraries can always be found under www.philipp-gruppe.de. | | | | | | | ■ Engineering contact | | | | | | | | | Phone: +49 (0) 6021 / 40 27-318 Fax: +49 (0) 6021 / 40 27-340 E-mail: technik@philipp-gruppe.de | | | | | | | Sales contact | | | | | | | | | Phone: +49 (0) 6021 / 40 27-300 Fax: +49 (0) 6021 / 40 27-340 E-mail: vertrieb@philipp-gruppe.de | | | | | | # **PHILIPP**GROUP #### Content | - | General notes | Page | 3 | |---|--------------------------------|------|----| | | ■ Description | Page | 4 | | | Fixing sockets specifications | Page | 4 | | | Fixing socket with cross pin | Page | 5 | | | ■ Dimensions and load classes | Page | 5 | | | Minimum centre distance | Page | 5 | | | Edge distance | Page | 5 | | | Minimum thicknesses | Page | 5 | | | Fixing socket with cross hole | Page | 6 | | | ■ Dimensions and load classes | Page | 6 | | | Minimum centre distance | Page | 6 | | | Edge distance | Page | 6 | | | Minimum thicknesses | Page | 7 | | | Fixing socket with waved end | Page | 8 | | | ■ Dimensions and load classes | Page | 8 | | | Minimum centre distance | Page | 8 | | | Edge distance | Page | 8 | | | Minimum thicknesses | Page | 9 | | | Fixing socket with angular end | Page | 10 | | | ■ Dimensions and load classes | Page | 10 | | | Minimum centre distance | Page | 10 | | | Edge distance | Page | 10 | | | Minimum thicknesses | Page | 11 | #### **General notes** This fixing system is suitable for all fixations a special approval is not required for. To determine the forces which act in the fixing system in the precast concrete unit and therefore to choose the correct fixing socket this Installation and Application Instruction is of some help. Typical applications are e.g. the fixation of push-pull props, windows, doors etc. All given loads are valid for a min. concrete strength of 25 N/mm². #### Fixing socket specification - The sockets of all fixing sockets are made of a high precision steel tube - Fixing sockets are electro-galvanised - Most of the fixing sockets are also available in stainless steel - Fixing sockets have a metric thread #### System overview The fixing system consists of the following four different socket types. Special designs are possible at any time. Fixing sockets must not be taken for the transport of precast concrete units. For the transport of precast concrete units we recommend to use special transport anchor systems. Fixing socket with cross hole Load transmission into the concrete is ensured by a stirrup, which has to be installed by the customer. Fixing socket with angular end Load transfer into the concrete is ensured by the angular end of the socket. #### Fixing socket with cross pin | Table 1: Load classes and dimensions | | | | | | | | | | |--------------------------------------|------|------------|------------|------|-----|--------|------|----|---------------| | RefNo.
electro- | Туре | Load class | Perm.
F | | Di | Weight | | | | | galvanised | M | | [kN] | ØD | h | е | d | f | [kg/100 pcs.] | | 6807212060 | 12 | 5.0 | 5.0 | 17.0 | 60 | 13.0 | 50.0 | 10 | 7.5 | | 6807216080 | 16 | 8.0 | 8.0 | 22.5 | 80 | 19.0 | 50.0 | 12 | 14.6 | | 6807216100 | 16 | 10.0 | 10.0 | 22.5 | 100 | 19.0 | 50.0 | 12 | 16.5 | | 6807220095 | 20 | 12.5 | 12.0 | 27.0 | 95 | 20.0 | 85.0 | 14 | 27.3 | | 6807220115 | 20 | 14.0 | 13.0 | 27.0 | 115 | 20.0 | 85.0 | 14 | 30.8 | | 6807224120 | 24 | 18.0 | 18.0 | 32.0 | 120 | 24.0 | 85.0 | 14 | 46.0 | The weight of 1.0 t corresponds to 10.0 kN. #### Minimum centre distance If fixing sockets are installed the centre distance must be at least $2 \times \min$ arresp. $2 \times \min$ br (see Table 2). Depending on the application in slabs or walls the corresponding minimum centre distance has to be chosen (see Picture 2 and 3). #### **Edge distance** Fixing sockets can be installed with the min. distance a_r resp. b_r (Table 2) to the edge. Depending on the application in slabs or walls the corresponding minimum edge distance has to be chosen (see Picture 2 and 3). In order to ensure a save load transmission by the installed Fixing socket the basic conditions given in Table 2 must be paid attention to. If a higher concrete cover is required, the dimensions of the concrete element must be adapted accordingly. It has to be paid attention to the fact that a minimum strength of **25 N/mm²** at the first time of loading the concrete must have when Fixing sockets are used. #### Fixing socket with cross hole | Table 3: Load classes and dimensions | | | | | | | | | |--------------------------------------|------|---------------|---------|------------|-----------|-----------|------------|---------------| | RefNo.
electro- | Type | Load
class | Perm. F | | Weight | | | | | galvanised | М | | [kN] | ØD
[mm] | h
[mm] | e
[mm] | Ød
[mm] | [kg/100 pcs.] | | 6801206040 | 6 | 1.5 | 1.5 | 9.0 | 40 | 8 | 6.3 | 1.0 | | 6801208040 | 8 | 2.0 | 2.0 | 11.0 | 40 | 10 | 8.3 | 1.0 | | 6801208050 | 8 | 2.5 | 2.5 | 11.0 | 50 | 10 | 8.3 | 1.4 | | 6801210050 | 10 | 3.5 | 3.5 | 13.5 | 50 | 11 | 8.3 | 1.9 | | 6801212060 | 12 | 5.0 | 5.0 | 17.0 | 60 | 13 | 12.2 | 3.8 | | 6801212070 | 12 | 6.0 | 6.0 | 17.0 | 70 | 13 | 12.2 | 4.3 | | 6801216070 | 16 | 7.0 | 7.0 | 22.5 | 70 | 19 | 12.2 | 9.4 | | 6801216080 | 16 | 8.0 | 8.0 | 22.5 | 80 | 19 | 12.2 | 10.8 | | 6801216100 | 16 | 10.0 | 10.0 | 22.5 | 100 | 19 | 12.2 | 12.4 | | 6801216120 | 16 | 12.0 | 12.0 | 22.5 | 120 | 19 | 12.2 | 14.4 | | 6801220100 | 20 | 12.5 | 12.5 | 27.0 | 100 | 20 | 14.3 | 17.0 | | 6801220120 | 20 | 14.0 | 14.0 | 27.0 | 120 | 20 | 14.3 | 21.3 | | 6801224120 | 24 | 18.0 | 18.0 | 32.0 | 120 | 24 | 14.3 | 28.0 | | 6801230150 | 30 | 27.5 | 27.5 | 42.0 | 150 | 30 | 17.2 | 66.0 | The weight of 1.0 t corresponds to 10.0 kN. #### Minimum centre distance If fixing sockets are installed the centre distance must be at least $2 \times \min$. a_r resp. $2 \times \min$. b_r (see Table 4). Depending on the application in slabs or walls the corresponding minimum centre distance has to be chosen (see Picture 5 and 6). #### **Edge distance** Fixing sockets can be installed with the min. distance a_r resp. b_r (Table 4) to the edge. Depending on the application in slabs or walls the corresponding minimum edge distance has to be chosen (see Picture 5 and 6). #### Fixing socket with cross hole | Table 4: Centre/edge distances, minimum element thicknesses | | | | | | | | | |---|--|--|--------------------------------|--|--|--|--|--| | RefNo.
electro-
galvanised | Edge distance
min. a _r
[mm] | Edge distance
min. b _r
[mm] | Element thickness
d
[mm] | | | | | | | 6801206040 | 60 | 80 | 65 | | | | | | | 6801208040 | 60 | 80 | 65 | | | | | | | 6801208050 | 75 | 100 | 75 | | | | | | | 6801210050 | 75 | 100 | 75 | | | | | | | 6801212060 | 90 | 120 | 85 | | | | | | | 6801212070 | 105 | 140 | 95 | | | | | | | 6801216070 | 105 | 140 | 95 | | | | | | | 6801216080 | 120 | 160 | 105 | | | | | | | 6801216100 | 150 | 200 | 125 | | | | | | | 6801216120 | 180 | 240 | 145 | | | | | | | 6801220100 | 150 | 200 | 125 | | | | | | | 6801220120 | 180 | 240 | 145 | | | | | | | 6801224120 | 180 | 240 | 145 | | | | | | | 6801230150 | 225 | 300 | 175 | | | | | | It has to be paid attention to the fact that a minimum strength of **25 N/mm²** at the first time of loading the concrete must have when Fixing sockets are used. $$\sqrt{F_Z^2 + F_Q^2} \le \text{perm. F}$$ #### Fixing socket with waved end | Table 5: Load classes and dimensions | | | | | | | | | | |--------------------------------------|------|---------------|---------|------|--------------------|------|---------------|--|--| | RefNo.
electro- | Туре | Load
class | Perm. F | | Dimensions
[mm] | | | | | | galvanised | M | | [kN] | ØD | h | е | [kg/100 pcs.] | | | | 6803210040 | 10 | 3.0 | 3.0 | 13.5 | 40 | 11.0 | 1.7 | | | | 6803210060 | 10 | 4.0 | 4.0 | 13.5 | 60 | 11.0 | 3.2 | | | | 6803212050 | 12 | 4.0 | 4.0 | 17.0 | 50 | 13.0 | 3.8 | | | | 6803212070 | 12 | 6.0 | 6.0 | 17.0 | 70 | 13.0 | 4.3 | | | | 6803216070 | 16 | 7.0 | 7.0 | 22.5 | 70 | 19.0 | 8.1 | | | | 6803216100 | 16 | 10.0 | 10.0 | 22.5 | 100 | 19.0 | 14.7 | | | | 6803220100 | 20 | 12.5 | 12.5 | 27.0 | 100 | 20.0 | 17.5 | | | | 6803224100 | 24 | 16.0 | 16.0 | 32.0 | 100 | 24.0 | 25.8 | | | The weight of 1.0 t corresponds to 10.0 kN. #### Minimum centre distance If Fixing sockets are installed the centre distance must be at least $2 \times \min$. a_r resp. $2 \times \min$. b_r (see Table 6). Depending on the application in slabs or walls the corresponding minimum centre distance has to be chosen (see Picture 8 and 9). ### Edge distance Fixing sockets can be installed with the min. distance a_r resp. b_r (Table 6) to the edge. Depending on the application in slabs or walls the corresponding minimum edge distance has to be chosen (see Picture 8 and 9). #### Fixing socket with waved end | Table 6: Centre/edge distances, minimum element thicknesses | | | | | | | | | | |---|--|--|--------------------------------|--|--|--|--|--|--| | RefNo. electro- galvanised | Edge distance
min. a _r
[mm] | Edge distance
min. b _r
[mm] | Element thickness
d
[mm] | | | | | | | | 6803210040 | 75 | 100 | 75 | | | | | | | | 6803210060 | 90 | 120 | 85 | | | | | | | | 6803212050 | 75 | 120 | 75 | | | | | | | | 6803212070 | 105 | 140 | 95 | | | | | | | | 6803216070 | 105 | 140 | 95 | | | | | | | | 6803216100 | 150 | 200 | 125 | | | | | | | | 6803220100 | 150 | 200 | 125 | | | | | | | | 6803224100 | 180 | 240 | 145 | | | | | | | In order to ensure a save load transmission by the installed Fixing socket the basic conditions given in Table 6 must be paid attention to. If a higher concrete covering is required, the dimensions of the concrete element must be changed accordingly. It has to be paid attention to the fact that a minimum strength of **25 N/mm²** at the first time of loading the concrete must have when Fixing sockets are used. $$\sqrt{F_Z^2 + F_Q^2} \le \text{perm. F}$$ #### Fixing socket with angular end | Table 7: Load classes and dimensions | | | | | | | | | |--------------------------------------|------|---------------|---------|------|--------|----|----|---------------| | RefNo.
electro- | Туре | Load
class | perm. F | | Weight | | | | | galvanised | М | | [kN] | ØD | h | е | d | [kg/100 pcs.] | | 6805208035 | 8 | 1.8 | 1.8 | 11.0 | 35 | 10 | 25 | 1.9 | | 6805210060 | 10 | 4.0 | 4.0 | 13.5 | 60 | 11 | 25 | 4.6 | | 6805212045 | 12 | 3.5 | 3.5 | 17.0 | 45 | 13 | 25 | 4.8 | | 6805212070 | 12 | 6.0 | 6.0 | 17.0 | 70 | 13 | 25 | 7.4 | | 6805216060 | 16 | 6.0 | 6.0 | 22.5 | 60 | 19 | 35 | 10.1 | | 6805216100 | 16 | 10.0 | 10.0 | 22.5 | 100 | 19 | 35 | 14.8 | | 6805216130 | 16 | 12.0 | 12.0 | 22.5 | 130 | 19 | 35 | 17.9 | | 6805220100 | 20 | 12.5 | 12.5 | 27.0 | 100 | 20 | 35 | 24.0 | The weight of 1.0 t corresponds to 10.0 kN. #### Minimum centre distance If Fixing sockets are installed the centre distance must be at least $2 \times \text{min. a}_r$ resp. $2 \times \text{min. b}_r$ (see Table 8). Depending on the application in slabs or walls the corresponding minimum centre distance has to be chosen (see Picture 11 and 12). #### **Edge distance** Fixing sockets can be installed with the min. distance a_r resp. b_r (Table 8) to the edge. Depending on the application in slabs or walls the corresponding minimum edge distance has to be chosen (see Picture 11 and 12). #### Fixing socket with angular end | Table 8: Centre/edge distances, minimum element thicknesses | | | | | | | | | |---|--|--|--------------------------------|--|--|--|--|--| | RefNo.
electro-
galvanised | Edge distance
min. a _r
[mm] | Edge distance
min. b _r
[mm] | Element thickness
d
[mm] | | | | | | | 6805208035 | 60 | 80 | 55 | | | | | | | 6805210060 | 75 | 120 | 85 | | | | | | | 6805212045 | 90 | 120 | 65 | | | | | | | 6805212070 | 105 | 140 | 95 | | | | | | | 6805216060 | 105 | 140 | 85 | | | | | | | 6805216100 | 150 | 200 | 125 | | | | | | | 6805216130 | 200 | 250 | 155 | | | | | | | 6805220100 | 150 | 200 | 125 | | | | | | In order to ensure a save load transmission by the installed Fixing socket the basic conditions given in table 8 must be paid attention to. If a higher concrete covering is required, the dimensions of the concrete element must be changed accordingly. It has to be paid attention to the fact that a minimum strength of **25 N/mm²** at the first time of loading the concrete must have when Fixing sockets are used. $$\sqrt{F_Z^2 + F_Q^2} \le \text{perm. F}$$ Our customers trust us to deliver. We do everything in our power to reward their faith and we start each day intending to do better than the last. We provide strength and stability in an ever-changing world. ### Welcome to the PHILIPP Group Sustainable solutions #### PHILIPP GmbH Lilienthalstrasse 7-9 D-63741 Aschaffenburg Phone: +49 (0) 6021/40 27-0 Fax: +49 (0) 6021/40 27-440 info@philipp-gruppe.de #### **PHILIPP GmbH** Roßlauer Strasse 70 D-06869 Coswig/Anhalt Phone: +49 (0) 34903/6 94-0 Fax: +49 (0) 34903/6 94-20 info@philipp-gruppe.de #### PHILIPP GmbH Sperberweg 37 D-41468 Neuss Phone: +49 (0) 2131/59 18-0 Fax: +49 (0) 2131/59 18-10 info@philipp-gruppe.de #### PHILIPP Vertriebs GmbH Leogangerstraße 21 A-5760 Saalfelden / Salzburg Phone + 43 (0) 6582 / 7 04 01 Fax + 43 (0) 6582 / 7 04 01 20 info@philipp-gruppe.at